Improving Fuzzy Algorithms for Automatic Magnetic Resonance Image Segmentation
نویسندگان
چکیده
In this paper, we present reliable algorithms for fuzzy k-means and C-means that could improve MRI segmentation. Since the k-means or FCM method aims to minimize the sum of squared distances from all points to their cluster centers, this should result in compact clusters. Therefore the distance of the points from their cluster centre is used to determine whether the clusters are compact. For this purpose, we use the intra-cluster distance measure, which is simply the median distance between a point and its cluster centre. The intra-cluster is used to give us the ideal number of clusters automatically; i.e a centre of the first cluster is used to estimate the second cluster, while an intra-cluster of the second cluster is obtained. Similar, the third cluster is estimated based on the second cluster information (centre and intra cluster), so on, and only stop when the intra-cluster is smaller than a prescribe value. The proposed algorithms are evaluated and compared with established fuzzy kmeans and C-means methods by applying them on simulated volumetric MRI and real MRI data to prove their efficiency. These evaluations, which are not easy to specify in the absence of any prior knowledge about resulted clusters, for real MRI dataset are judged visually by specialists since a real MRI dataset cannot give us a quantitative measure about how much they are successful.
منابع مشابه
Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملAutomatic Stroke Lesions Segmentation in Diffusion-Weighted MRI
Diffusion-Weighted Magnetic Resonance Imaging (DWI) is widely used for early cerebral infarct detection caused by ischemic stroke. Manual segmentation is done by a radiologist as a common clinical process, nonetheless, challenges of cerebral infarct segmentation come from low resolution and uncertain boundaries. Many segmentation techniques have been proposed and proved by manual segmentation a...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملA kernelized fuzzy c-means algorithm for automatic magnetic resonance image segmentation
In this paper, we present alternative Kernelized FCM algorithms (KFCM) that could improve magnetic resonance imaging (MRI) segmentation. Then we implement the proposed KFCM method with considering some spatial constraints on the objective function. The algorithms incorporate spatial information into the membership function and the validity procedure for clustering. We use the intra-cluster dist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 7 شماره
صفحات -
تاریخ انتشار 2008